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The survival probability of a particle which moves according to a biased ran- 
dom walk in a one-dimensional lattice containing randomly distributed deep 
traps is studied at large times. Exact asymptotic expansions are deduced for 
fields exceeding a certain threshold, using the method of images. In order to 
cover the whole range of fields, we also derive the behavior of the survival 
probability below this threshold, using the eigenvalue expansion method. The 
connection with the continuous diffusion model is discussed. 
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1. I N T R O D U C T I O N  

In the last few years, diffusion in a medium containing randomly dis- 
tributed traps has been the subject of considerable theoretical work. The 
general interest this problem generates is due to the wide range of its 
applications in the field of nonequilibrium phenomena, from chemical reac- 
tions to recombination processes in semiconductorsJ m) The one-dimen- 
sional model with stationary random deep traps was studied intensively 
because its simplicity allows the deduction of exact solutions. Various 
results have been obtained in this case concerning some quantities of 
physical significance. ~176 Among them, the survival probability of a par- 
ticle which performs a random walk stands out by its importance for the 
characterization of the temporal evolution of the system. The results 
published so far regarding the dominant long-time behavior of this quan- 
tity can be summarized as follows. 
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1. In the case of free diffusion the probability of survival goes like 
exp( - const �9 t 1/3).~ 1,4,6,8,11 ) 

2. If an external field is present, this behavior becomes exponential: 
e x p ( -  Kt). ~3'5'8 10/ 

3. There is a critical field strength which separates two different 
regimes: below this value, K is only field dependent, while above it, K 
depends also on the concentration of traps/5'8'9~ The above statements were 
proved for both continuous and discrete media. For the continuous dif- 
fusion model, a rigorous deduction of the dependence of K on the field and 
trap concentration was made for any values of these parameters, using the 
Brownian motion formalism. (9) On the other hand, the expression for K 
was obtained in the model of hopping on a lattice only for low fields and 
low concentration of traps. (4'5) 

This paper provides the exact long-time solution for the survival 
probability in the case of the biased random walk on a lattice with 
infinitely deep traps. The results are valid for any bias and trap concen- 
tration. The main result is the following expression, which gives the 
coefficient K (which determines the dominant long-time behavior) as a 
continuous, nonanalytical function of the bias t/, defined in (2.2), and the 
trap concentration c: 

2[1--(1--t/2)1/2], r/<t/o 

K(r/ ,c)= c(2rl-c-tlc ) 1 - - ( l - c )  2 (1.1) 
1 - c  ' t />  t/~ q~  1 + ( 1 - c ) 2  

At the same time, besides the leading asymptotic term, the next to leading 
corrections (of any order) are given in a way which permits the estimation 
of errors. 

The next section contains the model and its subcritical behavior 
deduced by the use of the eigenvalue representation method. Section 3 is 
devoted to the derivation of the large-time asymptotics at supracritical 
fields, which is our main result. The conclusions and discussions are left for 
the last section. 

2. SUBCRIT ICAL  BEHAVIOR 

The description of the biased random walk dynamics on a chain is 
made here in the framework of the rate equation formalism. The 
probabilities of finding the particle at the nth site at the time t, denoted by 
Pn(t), satisfy the following set of equations: 

dPn/dt= --(W+ +W_)Pn+W+Pn_I+W Pn+I, n~7/ (2.1) 
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where W_+ are the transition rates between nearest neighbor sites in the 
right or left direction, respectively. We suppose also the fulfilment of the 
detailed balance condition, which relates the ratio of these quantities to the 
field strength E, the lattice spacing a, and the charge of the particle e: 

W+ l + q  
~__ = exp(2e) - 1 - r/ 

eaE 
e-2kBT'  0~<q~<l (2.2) 

If we rescale the time with the mean transition rate W =  (W+ + W_)/2, 
Eq. (2.1) can be written as an expression containing only the bias q, which 
was defined above: 

dP,/dt= -2Pn+(l +rl)Pn_l +(1-rl)P,+l,  nee  (2.3) 

Due to presence of infinitely deep traps, we have to solve (2.3) for a finite 
chain, free of traps, but with absorbing boundary conditions. Denoting by 
PN(n, m, t) the probability of finding the particle at the site n at time t if it 
started from the site m at t = 0  inside a chain of length a ( N - 2 ) ,  the 
survival probability is obtained by averaging over all the configurations of 
traps: 

N - - I  

S(q,c,t)=c 2 ( l - c )  N-2 ~ Pu(n,m,t) (2.4) 
N = 2  n , m =  1 

Explicit expressions for PN c a n  be obtained in two ways: (1) 
representing them in terms of the eigenvalues of the evolution operator for 
the finite-chain problem with perfectly absorbing ends, or (2) using the 
method of images. It will be shown in Section 3 that the second method 
gives good results at long times for supracritical fields. In this section we 
adopt the eigenvalue representation. 

Let us consider a chain containing N -  1 sites, bounded by two infinite 
traps. The particle dynamics is described b y  Eq. (2.3) with perfectly 
absorbing boundary conditions. The Jacobi-type matrix which describes 
the rhs of this equation is non-Hermitic and has the eigenvalues 

7k=2[1--(1--qZ)l/2cosOk], Ok=kzc/N, k = l  ..... N - 1  (2.5) 

The corresponding normalized right (left) eigenvectors have the com- 
ponents 

(2/N) 1/2 z -+ (" -1) sin nOk, n = 1,..., N -  i (2.6) 

where 

z=E(l+~l)/(1-q)] I/2, z ~ l  
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If we write the solution PN(n, m, t) using the spectral decomposition of the 
above matrix, we obtain 

2N--1 
PN(rt, m, t) = ~  ~ e ~'z n r, sin mOk sin nO k (2.7) 

k=l 

One expects the long-time behavior of the survival probability to be 
governed by the lowest eigenvalue k = 1 and by long chains (large N), so 
that Eq. (2.4) may be approximated as follows: 

7%2(1--y/2)1/2 ( C ) 2 
S(n, c, t)~ [1---_ [f7 - 723 

x N~=2~--gex p ~  1 {Nln[(l--e)z] ~2(l--qz)'/2t} ( 2 . 8 ) ~ -  

Provided that (1 - c ) z  < 1, the sum in (2.8) can be evaluated by the saddle 
point method (6) and after some trivial algebra one gets the following time 
decay of the survival probability('~ 

S(rl, c, t ) . . ~ e x p ( - C t - C l t ' / 3 ) ,  C = 2 [ 1  - ( 1  _ q2)1/2] 
(2.9) 

C, = 3{ 2722(1 - rl2) 1/2 ln2[(1 - c)z] },/3 

It is obvious from (2.8) that the equation (1 - c)z = 0 defines a critical bias 

~/o(C) = [1 - (1 - c)2]/[1 + (1 - c) 2] (2.10) 

above which the saddle point method breaks down and the summation 
over N does not even converge. This means that the lowest eigenvalue 
approximation used for the deduction of (2.8) fails. As we shall see in the 
next section, at r/= q0 the qualitative behavior of the coefficient K changes, 
too. 

3. SUPRACRIT ICAL FIELDS 

The supracritical regime is defined by ( 1 -  c)z > 1 (r/> r/o ). Returning 
to the general expression (2.7), let us use the well-known expansion 

exp(t cos ~ )=  ~ Jp(t) cosp~ 
p= oo 

where Jp is the modified Bessel function of integer order p and in our case 
= kn/N. Then the summation over k, which indexes the eigenvalues, can 

be carried out easily and one gets 
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PN(n, m, t) = (exp{ --2t[1 -- (1 -- t/2) 1/2] }) z "-m 

x ~ [P(n-m--2pN, (1 __ ~ 2 ) i / 2  t) 
p =  --oO 

- P(n+m-2pN, (1 - t /2)  1/2 t)] (3.1) 

In the above expression P(n, t) is nothing else but the solution for the free 
random walk problem, without field and traps, i.e., 

P(n, t) = e-2'J,(2t),  P(n, 0) = cSn.o (3.2) 

This formulation allows a straightforward parallel to the method of images 
(see, for instance, ref. 8). Indeed, the positive term with p = 0 represents the 
source (i.e., the solution of the problem in the absence of traps), while all 
the other terms represent its images needed to enforce the absorbing boun- 
dary conditions. 

Introducing (3.1) in (2.4), the survival probability can be written as 
the sum over the contributions of all images: 

with 

SOl, c,t)= ~ (-1)~Sp(q,c,t) (3.3) 

C 2 N - - I  

Sp(tl, c, t )=--e -2('-~ ~ v ev v2 ~ z" "P(n-xP.m, r) (3.4) 
N = 2  n,m=.l  

where 

Np+m, 
xP'm= Np+ N - m ,  

p = even 

p = odd 

is the center of the image number p and ~ = (1 - 1 /2)  1/2 t, v = 1 - c. 
The large-time behavior of (3.4) is much more easily estimated if we 

extend the summations over m and n in the following way: 

C 2 

e2('-~)Sp(q, c, t ) ~ - 7  ~ vN 
N = 2  

N - - 1  

g E 
n =  - -co  m = l  

(3.5) 

The supplementary terms introduced in this way do not change the 
asymptotic behavior because, using the obvious inequality P(n, v)~  1, they 
become dominated by convergent geometric series which do not depend on 
t. They are negligible in the t ~ oo limit since, as we shall see later, the 
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dominant term in Eq. (3.5) is exponentially increasing. Replacing n by 
N - n ,  we can cast Eq. (3.5) in the following form: 

C 2 
e2(t_~)Sp(rl, C , t )~_ j  ~ 1 ~ (vz)Np(N--n--XP,  m,Z ) (3.6) 

1 z n + m  
n , m =  N = 2  

In the above formula the summation over N can be now extended to - 0% 
using the same type of upper bounds, and taking into account that vz > 1. 

For definiteness we consider here the case p = e v e n .  Then Eq. (3.6) 
reads 

C 2 oo 1 ~ 2 ( p _  1) N 
e 2('- ~)S?(~I, c, t) ~ -~  Z z" + " 

n , m  = 1 N ~ --oo 

x P [ ( p - l ) N + n + m , ~ ] ,  L = (vz) 1/(p- 1) (3.7) 

The summation over N is readily performed using 

[( ,38a, 2nP(n, Q = e x p  2 + ~  
n =  --o~3 

and 

1 exp i 2s~ ( n - l )  ~n, pN+l (3.8b) 
P P N=-~ 

Equation (3.8a) is nothing but the generating function formula for the 
modified Bessel functions (~3) written in terms of P(n, ~) [see Eq. (3.2)]. 
Combining (3.8a) and (3.8b), one gets 

N =  --oo 

,~PNp(pN + l, ~) 

P ~ (~? : ) - t  exp ~p,, + - - -  2 ~ 
s = O  ~ p , s  

~p,s = 2,e ir (3.9) 

This identity holds for p < 0, too, if we change p into Ipl on the rhs. Using 
(3.9) in (3.7), one immediately gets 

c 2 1 Ip-ll l 1 
Sp(q, tJ~-~e-Z(t' ~) I P -  1L sL=o'C" (z~Jp-lJ,s- 1) 2 C, 

I( - - 1  )1 x e x p  ~ [ P - l l ' s t  ][Ip-ll.s 2 r (3.10a) 
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The calculation for p = odd proceeds in the same way, giving 

C 2 l I p l -  1 1 

Sp(rl, c, t)..~-~e ~('-~)-~ ,~=o z2-  z(~ppr.s + l/~lpl,s) q- 1 

1 - 2 ) ' c ]  (3.lOb) X + - -  
exp [(~[IP"" ~lpl,s 

For each p, the dominant term is that corresponding to s = 0. It behaves 
like 

1,, 
e x p { - - [ 2 - ( 1 - - ~ / 2 ) t / 2 ( k + ~ ) l t  }, )~=[(vz)t/p, 

It is obvious that the dominant asymptotic terms in 
probability function S(r/, c, t) are those corresponding to 
p---- -1 ,  0, 1, 2. Their total contribution is 

p = even 
p = odd 

(3.11) 

the survival 
the images 

Z21) - -  ! ) 2 e x p { - - [ 2 - ( 1 - r l 2 ) l / 2 ( v z + l ) ] t }  (3.12) 

The exponent in (3.12) coincides with (1.1) for q>t/o. Equations (3.10) 
also give as many successive terms as one desires in the asymptotic expan- 
sion of S(q, c, t) by adding the contribution of more and more remote 
images to those already considered in (3.12). Moreover, the image expan- 
sion is very convenient for the control of errors. Indeed, if we split ().3) 
into left (p < 0) and right (p/> 0) series, it is obvious that both are made up 
of monotonically decreasing terms with alternating signs. For such series it 
is well known that the first neglected term dominates the rest of the series. 

4. CONCLUSIONS AND DISCUSSIONS 

The problem of the long-time asymptotics of the survival probability 
S(q, c, t) for a particle which performs a random walk i a one-dimensional 
lattice in presence of deep traps and external bias has been investigated. Its 
dominant behavior is described by the decay rate K(q, c) given in Eq. (1.1), 
which turns out to be a nonanalytic function of q. There is a critical bias 
qo(C) where the second derivative of K(rl, c ) is discontinuous. The 
preexponential factor is also calculated [see Eq.(3.12)]. Actually, 
Eqs. (3.10) give explicitly all the terms of the asymptotic series of S(r/, c, t). 

The same problem can be approached for the continuous model 
described by a Fokker-Planck equation, (3'7'8) using exactly the same 
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techniques. One obtains an asymptotic series whose leading term has the 
same exponent as given by Eisele and Lang. (9) The series can be also 
recovered from its discrete counterpart  given in this paper by applying a 
scaling limit procedure consisting in taking the limit of small lattice spacing 
(a ~ 0) and large time (t --* oo) along with a corresponding scaling of r /and 
c. More precisely, 

SC~ 12, t ) =  lim S(arl, ac, a2t) (4.1) 
c t ~ 0  

This correspondence between the two models explains why 
M o v a g h a r e t a l . ,  ~5) although working on a discrete model (but in the 
approximation of small t/ and c) ended up with the leading term of the 
continuous case. 

The present results have been obtained by the use of the eigenvalue 
expansion in the subcritical regime and by the image method in the 
supracritical one. Since the image expansion is well known for its poor con- 
vergence for large times, ~8) it is worth pointing out why it works in this 
problem. This occurs because the width of any image increases as t m ,  while 
the main contribution to the survival probability arises from chains with 
lengths N ~ t, so that at large times the spacing between the images is much 
greater than their width. 
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